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Introduction

About

Myself:
I With SUSE/Novell since 2000
I Working on openSUSE.org download infrastructure
I openSUSE Build service
I Past projects:

I Maintained Apache, OpenSSL, DHCP
I Ported SUSE Linux to IBM iSeries platform (SLES7/8)

http://www.opensuse.org/Mirror_Infrastructure
http://www.opensuse.org/Build_Service
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This Talk:
I Challenges at openSUSE.org
I How we distribute the traffic
I Things that might be relevant to you
I Demo
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Introduction

The Problem

"Everything counts in large amounts"
I Different releases, subprojects, architectures, ...
I Large files (CD/DVD images)
I Ongoing stream of security updates and bugfixes
I Ongoing "Check for updates" by clients (majority of

requests)

More downloads than one could ever handle
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The Problem

I Number of files: > 700.000
I Tree size: 864 GB
I High turnover rate
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The Problem

Human users
I Download mostly large files (CD/DVD images)
I 0.5 to 35 req/s

Machine clients
I Variety of "installer tools"
I Smaller files
I 200 to 400 req/s

Altogether, 15,000,000 to 40,000,000 requests per day
About 50% of those are redirected to mirrors.
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Approaches

Content Delivery Networks (CDN)
I Wide area load distribution by adding intelligence to

standard DNS
I "Industry standard" solution – used by Apple, Novell, ...
I Too expensive for open source projects
I openSUSE gets some leftover capacities from Novell
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Mirrors Come To Help
I Task: build a "Poor man’s CDN"
I Even though we don’t control them ourselves
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Mirrors are incomplete
I Huge amounts of content: only parts will be mirrored.
I Rapidly changing content: mirrors can never be 100% up to

date.

=> we need to deal with partial mirrors.
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Four Ways To Distribute Traffic To Mirrors

1. Static mirror lists

2. Dynamic mirror lists

3. Dynamic mirror lists, used to redirect transparently

4. Metalinks
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Method 1: Static Mirror Lists
I Hard to maintain
I Too static
I Hardly ever correct
I Low granularity
I Work for small file trees
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Method 2: Dynamic Mirror Lists
I Mirror monitoring increases correctness
I Automation -> finer granularity
I Often combined with geolocation of clients
I User gets a suggestion, or needs to chose interactively
I Works for single files (like DVD image, or Samba tarball)
I Can annoy users, or make them all pick the same (good)

mirror
I Doesn’t work so well for automated downloads
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Method 3: Dynamic Mirror Lists, Transparent Redirects
I Mirror choice made by server
I Client doesn’t see the other mirrors
I User doesn’t need to figure out
I But more difficult for user to override choice
I Relies on intensive mirror monitoring
I Good for machine clients
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Method 4: Metalinks
I A Metalink is a mirror list in standardized,

machine-readable format (see metalinker.org)
I HTTP, FTP, P2P under one umbrella
I Client can make its own choice, failover possible
I Good for humans and machines

http://metalinker.org
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More about Metalinks
I "self-healing downloads" experience
I XML file containing HTTP, FTP, BitTorrent or other P2P

URLs
I Segment hashes for transfer integrity checking
I Can include PGP signatures
I Clients: aria2c (commandline), DownThemAll (Firefox

extension), KGet, ...
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My Christmas Wish For The Future Of Downloading...
I Transparently negotiated metalinks
I => no extra link needed

I Metalink clients will get metalink
I Other clients will get redirect

I Supported today by download.opensuse.org, aria2,
DownThemAll, Retriever, Metalink Checker

I Hopefully becoming the standard
I Goal: native support in web browsers
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My Christmas Wish #2
I Metalink support in libzypp
I GSoC student working on it

Go, Gerard, go!
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Components

People call it "redirector" – but it rather is sort of a "mirror brain".
I Mirror database
I Monitoring tools
I Mirrorlist generator and redirector
I Communication & documentation



Content Distribution On Large Scale

Implementation

Mirror Database

Outline
Introduction

About
The Problem
Approaches

Implementation
Components
Mirror Database
The Mirrorlist Generator / Redirector

Deployment
Setup
What We Optimized
Pros, Cons, Ideas



Content Distribution On Large Scale

Implementation

Mirror Database

The Mirror Database
I Keeps inventory of mirrors, on file-level

I Acquired and updated by crawling the mirror via rsync, FTP
or HTTP

I Keeps online status of mirrors
I Probing at short intervals

I Keeps metadata on mirrors
I Functional tests – does a mirror handle files > 2GB and

byte ranges?
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Implementation

The Mirrorlist Generator / Redirector

The Mirrorlist Generator / Redirector
I Apache module ("mod_zrkadlo")
I Hooks into request processing phase



Content Distribution On Large Scale

Implementation

The Mirrorlist Generator / Redirector

The Apache module proceeds like this:
I check if the requested file qualifies for redirection
I if not, the handler quits and lets the file be served directly
I canonicalize filename
I geolocate the client through its IP address
I search for possible mirrors in the database
I if no mirror was found, quit and let the file be served directly
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I sort mirrors by closeness, strength and randomize a bit
I return one of the following:

I a redirect (HTTP status code 302 Found and a
Location: header)

I sorted mirror list (if requested)
I metalink (if requested)
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The Mirrorlist Generator / Redirector

Example request:
GET /dist/openSUSE-10.3.iso HTTP/1.1
Host: download.opensuse.org

Server Reply:
HTTP/1.1 302 Found
Date: Sun, 02 Mar 2008 10:14:58 GMT
Server: Apache/2.2.8 (Linux/SUSE)
Location: http://ftp5.gwdg.de/opensuse/dist/openSUSE-
10.3.iso
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The Mirrorlist Generator / Redirector

Example metalink reply (shortened):
<?xml version="1.0" encoding="UTF-8"?>
<metalink version="3.0" xmlns="http://www.metalinker.org/"
origin="http://download.opensuse.org/dist/openSUSE-
10.3.iso">
<files>
<file name="openSUSE-10.3.iso">
<resources>
<url location="de" preference="100"> http://... </url>
<url location="de" preference="100"> http://... </url>
<url location="us" preference="99"> http://... </url>
[...]
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Deployment

Setup

Server Hardware:
I download.opensuse.org:

I P4 2x 3.4GHz, 4GB RAM, SLE10
I SAN with 1.4TB XFS filesystem
I also serves stage.opensuse.org (rsync mirror feed) &

drpmsync.opensuse.org & bittorrent tracker & repository
pusher

I mirrordb.opensuse.org:
I Xeon 4x 3.4GHz, 4GB RAM, SLE10
I mirror database and scan host
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I widehat.opensuse.org:
I Xeon 8x 2.3GHz, 16GB RAM, SLE10
I SAN with 1.4TB reiserfs filesystem

I reserve mirror (controlled by us)
I rsync.opensuse.org (public rsync mirror feed)
I bittorrent seeder

I sponsored by our ISP (IPExchange)
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History/Timeline
I 11/2006: hotfixing overloaded server during 10.2 release
I 5/2007: redirector replaced
I 8/2007: got widehat.o.o
I 9/2007: openSUSE 10.3 and updates on d.o.o
I 4/2008: metalink support
I 5/2008: automatic checking of mirrors large file support
I 6/2008: openSUSE 11.0 (second release with updates on

d.o.o)
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ftp.suse.com
I Is being phased out
I /pub/projects tree has a little activity
I 10.2 update tree is the last one
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Impressive Numbers

I openSUSE 10.3 release, October 2007:
I Peak bandwidth "served": 13 GB/s, i.e. 100 TB in a day.

I openSUSE 11.0 release, June 2008:
I Peak bandwidth "served": 22 GB/s, i.e. 170 TB in a day.
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Served By Nearly 100 Active Mirrors
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Optimizations

Scalability
I Apache needs 50-200 MB
I Load average about 1
I Database fits into memory

Stability
I Solid
I Downtimes limited to human error and hardware issues
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Main optimizations were:
I Smaller rsync modules
I New rsync modules for mirroring the most popular 10%
I Refinement of mirror selection
I Cache control headers
I Figure out the critical files not to redirect
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Optimizations

Files not redirected:
I update and factory tree: files without digit in name
I repositories tree: .xml .xml.gz .xml.asc .repo .ymp
I broken clients (user agents rpm/4.4.2 or APT-HTTP)
I files not present on any mirror
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Optimizations

Four Things The Content Creators Should Know
I New content needs to be considered for mirroring /

mirroring exclusion
I New content needs to be considered for redirection /

redirection exclusion
I Content which changes infrequently needs cache control

headers so it is cached
I Content which changes frequently needs cache control

headers so it is not cached (or validated)

=> Let openSUSE infra people know about new content
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Things that should not be mirrored
I Debuginfos
I Sources
I Unpopular architectures
I Older install repos

Our tree needs a split-up, into important and unimportant stuff



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

Outline
Introduction

About
The Problem
Approaches

Implementation
Components
Mirror Database
The Mirrorlist Generator / Redirector

Deployment
Setup
What We Optimized
Pros, Cons, Ideas



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

I Open Source
I Generic implementation
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Deployment

Pros, Cons, Ideas

File-Level Granularity vs. Directory-Level
I Allows for download statistics
I Makes small & partial mirrors useful
I Maximum control over how content is served. (Mirrors don’t

care about cache control headers)
I If a "broken file" is identified, we can stop redirecting for it,

instead of waiting for mirror synchronisation
I If we spread broken URLs, we can work around on the

server side
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Pros, Cons, Ideas

General Disadvantage Of Mirrors:
I They die all the time, and mostly don’t tell you
I Time window between failure and detection
I Failures can be very hard to detect (think of sporadic

firewall quirks)

Client-side failover needed
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Other Existing Approaches
I Bouncer: (Mozilla project) essentially similar approach, but

different implementation (PHP script); (I think) more
specialized to Mozilla software download structure

I Fedora MirrorManager / Yum: principally a very similar
approach, but done differently ;) They evolved from static
lists to dynamic mirror lists. Works with less granularity
(directory-wise).

I geomcfly: on-the-fly generator of metalinks based on
clients’ geographical location. No mirror management (I
think)

I mirmon: more a monitoring framework, but can be used
with a redirector. Implementation is quite different. Doesn’t
keep inventory of mirror, but checks a timestamp.

http://wiki.mozilla.org/Bouncer
http://fedoraproject.org/wiki/Infrastructure/Mirroring
http://docs.fedoraproject.org/yum/
http://sourceforge.net/projects/geomcfly
http://people.cs.uu.nl/henkp/mirmon/
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Other Existing Approaches (continued)
I Web caches (squid): could work fine, but requires people to

set up squids ;)
I Coral CDN, uses standard DNS but is not transparent
I mod_offload: requires script on mirror, which makes it act

as "active" cache. Files are mirrored on demand. Practical
if you control all mirrors

I BitTorrent (and other P2P): Only suitable for large files.
Requires special client

http://www.squid-cache.org/
http://www.coralcdn.org/
http://icculus.org/mod_offload/
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Todo / Ideas
I Promote metalinks
I Client feedback could trigger reactive mirror probing
I Hack the rsync daemon to directly update the database
I Find automated way to mirror files based on popularity

I ad-hoc rsync modules?
I massive space-savings on mirrors conceivable

I External api for mirror admins, to disable hosts, change
priority or trigger re-scan
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Other Ideas
I Finer geolocation would be good for "Internet countries"

like Germany
I Send mirrors their local clients (by network prefix?)
I Stickyness of (large) files to certain mirrors, to make better

use of buffer caches?
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Your Ideas?

(This space intentially left blank)
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We just love mirrors...

...because they make us visible :-)
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Thanks!
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Questions?

poeml at suse.de
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For Further Reading

I http://mirrorbrain.org/
I http://www.opensuse.org/Build_Service/Redirector
I https://forgesvn1.novell.com/svn/opensuse/trunk/

tools/download-redirector-v2/mod_zrkadlo/mod_zrkadlo.c

http://mirrorbrain.org/
http://www.opensuse.org/Build_Service/Redirector
https://forgesvn1.novell.com/svn/opensuse/trunk/tools/download-redirector-v2/mod_zrkadlo/mod_zrkadlo.c
https://forgesvn1.novell.com/svn/opensuse/trunk/tools/download-redirector-v2/mod_zrkadlo/mod_zrkadlo.c
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