
Content Distribution On Large Scale

Content Distribution On Large Scale
10 Things You Might Want To Know About openSUSE

Infrastructure

Dr. Peter Poeml

Novell / SUSE Linux AG
<poeml at suse.de>

Knowledge Sharing – 3rd July, 2008



Content Distribution On Large Scale

Introduction
About
The Problem
Approaches

Implementation
Components
Mirror Database
The Mirrorlist Generator / Redirector

Deployment
Setup
What We Optimized
Pros, Cons, Ideas



Content Distribution On Large Scale

Introduction

About

Outline
Introduction

About
The Problem
Approaches

Implementation
Components
Mirror Database
The Mirrorlist Generator / Redirector

Deployment
Setup
What We Optimized
Pros, Cons, Ideas



Content Distribution On Large Scale

Introduction

About

Myself:
I With SUSE/Novell since 2000
I Working on openSUSE.org download infrastructure
I openSUSE Build service
I Past projects:

I Maintained Apache, OpenSSL, DHCP
I Ported SUSE Linux to IBM iSeries platform (SLES7/8)

http://www.opensuse.org/Mirror_Infrastructure
http://www.opensuse.org/Build_Service


Content Distribution On Large Scale

Introduction

About

This Talk:
I Challenges at openSUSE.org
I How we distribute the traffic
I Things that might be relevant to you
I Demo



Content Distribution On Large Scale

Introduction

The Problem

Outline
Introduction

About
The Problem
Approaches

Implementation
Components
Mirror Database
The Mirrorlist Generator / Redirector

Deployment
Setup
What We Optimized
Pros, Cons, Ideas



Content Distribution On Large Scale

Introduction

The Problem

"Everything counts in large amounts"
I Different releases, subprojects, architectures, ...
I Large files (CD/DVD images)
I Ongoing stream of security updates and bugfixes
I Ongoing "Check for updates" by clients (majority of

requests)

More downloads than one could ever handle



Content Distribution On Large Scale

Introduction

The Problem

I Number of files: > 700.000
I Tree size: 864 GB
I High turnover rate



Content Distribution On Large Scale

Introduction

The Problem

Human users
I Download mostly large files (CD/DVD images)
I 0.5 to 35 req/s

Machine clients
I Variety of "installer tools"
I Smaller files
I 200 to 400 req/s

Altogether, 15,000,000 to 40,000,000 requests per day
About 50% of those are redirected to mirrors.



Content Distribution On Large Scale

Introduction

Approaches

Outline
Introduction

About
The Problem
Approaches

Implementation
Components
Mirror Database
The Mirrorlist Generator / Redirector

Deployment
Setup
What We Optimized
Pros, Cons, Ideas



Content Distribution On Large Scale

Introduction

Approaches

Content Delivery Networks (CDN)
I Wide area load distribution by adding intelligence to

standard DNS
I "Industry standard" solution – used by Apple, Novell, ...
I Too expensive for open source projects
I openSUSE gets some leftover capacities from Novell



Content Distribution On Large Scale

Introduction

Approaches

Mirrors Come To Help
I Task: build a "Poor man’s CDN"
I Even though we don’t control them ourselves



Content Distribution On Large Scale

Introduction

Approaches

Mirrors are incomplete
I Huge amounts of content: only parts will be mirrored.
I Rapidly changing content: mirrors can never be 100% up to

date.

=> we need to deal with partial mirrors.



Content Distribution On Large Scale

Introduction

Approaches

Four Ways To Distribute Traffic To Mirrors

1. Static mirror lists

2. Dynamic mirror lists

3. Dynamic mirror lists, used to redirect transparently

4. Metalinks



Content Distribution On Large Scale

Introduction

Approaches

Method 1: Static Mirror Lists
I Hard to maintain
I Too static
I Hardly ever correct
I Low granularity
I Work for small file trees



Content Distribution On Large Scale

Introduction

Approaches

Method 2: Dynamic Mirror Lists
I Mirror monitoring increases correctness
I Automation -> finer granularity
I Often combined with geolocation of clients
I User gets a suggestion, or needs to chose interactively
I Works for single files (like DVD image, or Samba tarball)
I Can annoy users, or make them all pick the same (good)

mirror
I Doesn’t work so well for automated downloads



Content Distribution On Large Scale

Introduction

Approaches

Method 3: Dynamic Mirror Lists, Transparent Redirects
I Mirror choice made by server
I Client doesn’t see the other mirrors
I User doesn’t need to figure out
I But more difficult for user to override choice
I Relies on intensive mirror monitoring
I Good for machine clients



Content Distribution On Large Scale

Introduction

Approaches

Method 4: Metalinks
I A Metalink is a mirror list in standardized,

machine-readable format (see metalinker.org)
I HTTP, FTP, P2P under one umbrella
I Client can make its own choice, failover possible
I Good for humans and machines

http://metalinker.org


Content Distribution On Large Scale

Introduction

Approaches

More about Metalinks
I "self-healing downloads" experience
I XML file containing HTTP, FTP, BitTorrent or other P2P

URLs
I Segment hashes for transfer integrity checking
I Can include PGP signatures
I Clients: aria2c (commandline), DownThemAll (Firefox

extension), KGet, ...



Content Distribution On Large Scale

Introduction

Approaches

My Christmas Wish For The Future Of Downloading...
I Transparently negotiated metalinks
I => no extra link needed

I Metalink clients will get metalink
I Other clients will get redirect

I Supported today by download.opensuse.org, aria2,
DownThemAll, Retriever, Metalink Checker

I Hopefully becoming the standard
I Goal: native support in web browsers



Content Distribution On Large Scale

Introduction

Approaches

My Christmas Wish #2
I Metalink support in libzypp
I GSoC student working on it

Go, Gerard, go!



Content Distribution On Large Scale

Implementation

Components

Outline
Introduction

About
The Problem
Approaches

Implementation
Components
Mirror Database
The Mirrorlist Generator / Redirector

Deployment
Setup
What We Optimized
Pros, Cons, Ideas



Content Distribution On Large Scale

Implementation

Components

People call it "redirector" – but it rather is sort of a "mirror brain".
I Mirror database
I Monitoring tools
I Mirrorlist generator and redirector
I Communication & documentation



Content Distribution On Large Scale

Implementation

Mirror Database

Outline
Introduction

About
The Problem
Approaches

Implementation
Components
Mirror Database
The Mirrorlist Generator / Redirector

Deployment
Setup
What We Optimized
Pros, Cons, Ideas



Content Distribution On Large Scale

Implementation

Mirror Database

The Mirror Database
I Keeps inventory of mirrors, on file-level

I Acquired and updated by crawling the mirror via rsync, FTP
or HTTP

I Keeps online status of mirrors
I Probing at short intervals

I Keeps metadata on mirrors
I Functional tests – does a mirror handle files > 2GB and

byte ranges?



Content Distribution On Large Scale

Implementation

The Mirrorlist Generator / Redirector

Outline
Introduction

About
The Problem
Approaches

Implementation
Components
Mirror Database
The Mirrorlist Generator / Redirector

Deployment
Setup
What We Optimized
Pros, Cons, Ideas



Content Distribution On Large Scale

Implementation

The Mirrorlist Generator / Redirector

The Mirrorlist Generator / Redirector
I Apache module ("mod_zrkadlo")
I Hooks into request processing phase



Content Distribution On Large Scale

Implementation

The Mirrorlist Generator / Redirector

The Apache module proceeds like this:
I check if the requested file qualifies for redirection
I if not, the handler quits and lets the file be served directly
I canonicalize filename
I geolocate the client through its IP address
I search for possible mirrors in the database
I if no mirror was found, quit and let the file be served directly



Content Distribution On Large Scale

Implementation

The Mirrorlist Generator / Redirector

The Apache module proceeds like this:
I check if the requested file qualifies for redirection
I if not, the handler quits and lets the file be served directly
I canonicalize filename
I geolocate the client through its IP address
I search for possible mirrors in the database
I if no mirror was found, quit and let the file be served directly



Content Distribution On Large Scale

Implementation

The Mirrorlist Generator / Redirector

The Apache module proceeds like this:
I check if the requested file qualifies for redirection
I if not, the handler quits and lets the file be served directly
I canonicalize filename
I geolocate the client through its IP address
I search for possible mirrors in the database
I if no mirror was found, quit and let the file be served directly



Content Distribution On Large Scale

Implementation

The Mirrorlist Generator / Redirector

The Apache module proceeds like this:
I check if the requested file qualifies for redirection
I if not, the handler quits and lets the file be served directly
I canonicalize filename
I geolocate the client through its IP address
I search for possible mirrors in the database
I if no mirror was found, quit and let the file be served directly



Content Distribution On Large Scale

Implementation

The Mirrorlist Generator / Redirector

The Apache module proceeds like this:
I check if the requested file qualifies for redirection
I if not, the handler quits and lets the file be served directly
I canonicalize filename
I geolocate the client through its IP address
I search for possible mirrors in the database
I if no mirror was found, quit and let the file be served directly



Content Distribution On Large Scale

Implementation

The Mirrorlist Generator / Redirector

The Apache module proceeds like this:
I check if the requested file qualifies for redirection
I if not, the handler quits and lets the file be served directly
I canonicalize filename
I geolocate the client through its IP address
I search for possible mirrors in the database
I if no mirror was found, quit and let the file be served directly



Content Distribution On Large Scale

Implementation

The Mirrorlist Generator / Redirector

I sort mirrors by closeness, strength and randomize a bit
I return one of the following:

I a redirect (HTTP status code 302 Found and a
Location: header)

I sorted mirror list (if requested)
I metalink (if requested)



Content Distribution On Large Scale

Implementation

The Mirrorlist Generator / Redirector

I sort mirrors by closeness, strength and randomize a bit
I return one of the following:

I a redirect (HTTP status code 302 Found and a
Location: header)

I sorted mirror list (if requested)
I metalink (if requested)



Content Distribution On Large Scale

Implementation

The Mirrorlist Generator / Redirector

I sort mirrors by closeness, strength and randomize a bit
I return one of the following:

I a redirect (HTTP status code 302 Found and a
Location: header)

I sorted mirror list (if requested)
I metalink (if requested)



Content Distribution On Large Scale

Implementation

The Mirrorlist Generator / Redirector

I sort mirrors by closeness, strength and randomize a bit
I return one of the following:

I a redirect (HTTP status code 302 Found and a
Location: header)

I sorted mirror list (if requested)
I metalink (if requested)



Content Distribution On Large Scale

Implementation

The Mirrorlist Generator / Redirector

I sort mirrors by closeness, strength and randomize a bit
I return one of the following:

I a redirect (HTTP status code 302 Found and a
Location: header)

I sorted mirror list (if requested)
I metalink (if requested)



Content Distribution On Large Scale

Implementation

The Mirrorlist Generator / Redirector

Example request:
GET /dist/openSUSE-10.3.iso HTTP/1.1
Host: download.opensuse.org

Server Reply:
HTTP/1.1 302 Found
Date: Sun, 02 Mar 2008 10:14:58 GMT
Server: Apache/2.2.8 (Linux/SUSE)
Location: http://ftp5.gwdg.de/opensuse/dist/openSUSE-
10.3.iso



Content Distribution On Large Scale

Implementation

The Mirrorlist Generator / Redirector

Example metalink reply (shortened):
<?xml version="1.0" encoding="UTF-8"?>
<metalink version="3.0" xmlns="http://www.metalinker.org/"
origin="http://download.opensuse.org/dist/openSUSE-
10.3.iso">
<files>
<file name="openSUSE-10.3.iso">
<resources>
<url location="de" preference="100"> http://... </url>
<url location="de" preference="100"> http://... </url>
<url location="us" preference="99"> http://... </url>
[...]



Content Distribution On Large Scale

Deployment

Setup

Outline
Introduction

About
The Problem
Approaches

Implementation
Components
Mirror Database
The Mirrorlist Generator / Redirector

Deployment
Setup
What We Optimized
Pros, Cons, Ideas



Content Distribution On Large Scale

Deployment

Setup

Server Hardware:
I download.opensuse.org:

I P4 2x 3.4GHz, 4GB RAM, SLE10
I SAN with 1.4TB XFS filesystem
I also serves stage.opensuse.org (rsync mirror feed) &

drpmsync.opensuse.org & bittorrent tracker & repository
pusher

I mirrordb.opensuse.org:
I Xeon 4x 3.4GHz, 4GB RAM, SLE10
I mirror database and scan host



Content Distribution On Large Scale

Deployment

Setup

I widehat.opensuse.org:
I Xeon 8x 2.3GHz, 16GB RAM, SLE10
I SAN with 1.4TB reiserfs filesystem

I reserve mirror (controlled by us)
I rsync.opensuse.org (public rsync mirror feed)
I bittorrent seeder

I sponsored by our ISP (IPExchange)



Content Distribution On Large Scale

Deployment

Setup

History/Timeline
I 11/2006: hotfixing overloaded server during 10.2 release
I 5/2007: redirector replaced
I 8/2007: got widehat.o.o
I 9/2007: openSUSE 10.3 and updates on d.o.o
I 4/2008: metalink support
I 5/2008: automatic checking of mirrors large file support
I 6/2008: openSUSE 11.0 (second release with updates on

d.o.o)



Content Distribution On Large Scale

Deployment

Setup

ftp.suse.com
I Is being phased out
I /pub/projects tree has a little activity
I 10.2 update tree is the last one



Content Distribution On Large Scale

Deployment

Setup

Impressive Numbers

I openSUSE 10.3 release, October 2007:
I Peak bandwidth "served": 13 GB/s, i.e. 100 TB in a day.

I openSUSE 11.0 release, June 2008:
I Peak bandwidth "served": 22 GB/s, i.e. 170 TB in a day.



Content Distribution On Large Scale

Deployment

Setup

Served By Nearly 100 Active Mirrors



Content Distribution On Large Scale

Deployment

Setup



Content Distribution On Large Scale

Deployment

Setup



Content Distribution On Large Scale

Deployment

Setup



Content Distribution On Large Scale

Deployment

Optimizations

Outline
Introduction

About
The Problem
Approaches

Implementation
Components
Mirror Database
The Mirrorlist Generator / Redirector

Deployment
Setup
What We Optimized
Pros, Cons, Ideas



Content Distribution On Large Scale

Deployment

Optimizations

Scalability
I Apache needs 50-200 MB
I Load average about 1
I Database fits into memory

Stability
I Solid
I Downtimes limited to human error and hardware issues



Content Distribution On Large Scale

Deployment

Optimizations

Main optimizations were:
I Smaller rsync modules
I New rsync modules for mirroring the most popular 10%
I Refinement of mirror selection
I Cache control headers
I Figure out the critical files not to redirect



Content Distribution On Large Scale

Deployment

Optimizations

Files not redirected:
I update and factory tree: files without digit in name
I repositories tree: .xml .xml.gz .xml.asc .repo .ymp
I broken clients (user agents rpm/4.4.2 or APT-HTTP)
I files not present on any mirror



Content Distribution On Large Scale

Deployment

Optimizations

Four Things The Content Creators Should Know
I New content needs to be considered for mirroring /

mirroring exclusion
I New content needs to be considered for redirection /

redirection exclusion
I Content which changes infrequently needs cache control

headers so it is cached
I Content which changes frequently needs cache control

headers so it is not cached (or validated)

=> Let openSUSE infra people know about new content



Content Distribution On Large Scale

Deployment

Optimizations

Things that should not be mirrored
I Debuginfos
I Sources
I Unpopular architectures
I Older install repos

Our tree needs a split-up, into important and unimportant stuff



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

Outline
Introduction

About
The Problem
Approaches

Implementation
Components
Mirror Database
The Mirrorlist Generator / Redirector

Deployment
Setup
What We Optimized
Pros, Cons, Ideas



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

I Open Source
I Generic implementation



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

File-Level Granularity vs. Directory-Level
I Allows for download statistics
I Makes small & partial mirrors useful
I Maximum control over how content is served. (Mirrors don’t

care about cache control headers)
I If a "broken file" is identified, we can stop redirecting for it,

instead of waiting for mirror synchronisation
I If we spread broken URLs, we can work around on the

server side



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

General Disadvantage Of Mirrors:
I They die all the time, and mostly don’t tell you
I Time window between failure and detection
I Failures can be very hard to detect (think of sporadic

firewall quirks)

Client-side failover needed



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

Other Existing Approaches
I Bouncer: (Mozilla project) essentially similar approach, but

different implementation (PHP script); (I think) more
specialized to Mozilla software download structure

I Fedora MirrorManager / Yum: principally a very similar
approach, but done differently ;) They evolved from static
lists to dynamic mirror lists. Works with less granularity
(directory-wise).

I geomcfly: on-the-fly generator of metalinks based on
clients’ geographical location. No mirror management (I
think)

I mirmon: more a monitoring framework, but can be used
with a redirector. Implementation is quite different. Doesn’t
keep inventory of mirror, but checks a timestamp.

http://wiki.mozilla.org/Bouncer
http://fedoraproject.org/wiki/Infrastructure/Mirroring
http://docs.fedoraproject.org/yum/
http://sourceforge.net/projects/geomcfly
http://people.cs.uu.nl/henkp/mirmon/


Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

Other Existing Approaches (continued)
I Web caches (squid): could work fine, but requires people to

set up squids ;)
I Coral CDN, uses standard DNS but is not transparent
I mod_offload: requires script on mirror, which makes it act

as "active" cache. Files are mirrored on demand. Practical
if you control all mirrors

I BitTorrent (and other P2P): Only suitable for large files.
Requires special client

http://www.squid-cache.org/
http://www.coralcdn.org/
http://icculus.org/mod_offload/


Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

Todo / Ideas
I Promote metalinks
I Client feedback could trigger reactive mirror probing
I Hack the rsync daemon to directly update the database
I Find automated way to mirror files based on popularity

I ad-hoc rsync modules?
I massive space-savings on mirrors conceivable

I External api for mirror admins, to disable hosts, change
priority or trigger re-scan



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

Todo / Ideas
I Promote metalinks
I Client feedback could trigger reactive mirror probing
I Hack the rsync daemon to directly update the database
I Find automated way to mirror files based on popularity

I ad-hoc rsync modules?
I massive space-savings on mirrors conceivable

I External api for mirror admins, to disable hosts, change
priority or trigger re-scan



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

Todo / Ideas
I Promote metalinks
I Client feedback could trigger reactive mirror probing
I Hack the rsync daemon to directly update the database
I Find automated way to mirror files based on popularity

I ad-hoc rsync modules?
I massive space-savings on mirrors conceivable

I External api for mirror admins, to disable hosts, change
priority or trigger re-scan



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

Todo / Ideas
I Promote metalinks
I Client feedback could trigger reactive mirror probing
I Hack the rsync daemon to directly update the database
I Find automated way to mirror files based on popularity

I ad-hoc rsync modules?
I massive space-savings on mirrors conceivable

I External api for mirror admins, to disable hosts, change
priority or trigger re-scan



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

Todo / Ideas
I Promote metalinks
I Client feedback could trigger reactive mirror probing
I Hack the rsync daemon to directly update the database
I Find automated way to mirror files based on popularity

I ad-hoc rsync modules?
I massive space-savings on mirrors conceivable

I External api for mirror admins, to disable hosts, change
priority or trigger re-scan



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

Todo / Ideas
I Promote metalinks
I Client feedback could trigger reactive mirror probing
I Hack the rsync daemon to directly update the database
I Find automated way to mirror files based on popularity

I ad-hoc rsync modules?
I massive space-savings on mirrors conceivable

I External api for mirror admins, to disable hosts, change
priority or trigger re-scan



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

Todo / Ideas
I Promote metalinks
I Client feedback could trigger reactive mirror probing
I Hack the rsync daemon to directly update the database
I Find automated way to mirror files based on popularity

I ad-hoc rsync modules?
I massive space-savings on mirrors conceivable

I External api for mirror admins, to disable hosts, change
priority or trigger re-scan



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

Other Ideas
I Finer geolocation would be good for "Internet countries"

like Germany
I Send mirrors their local clients (by network prefix?)
I Stickyness of (large) files to certain mirrors, to make better

use of buffer caches?



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

Other Ideas
I Finer geolocation would be good for "Internet countries"

like Germany
I Send mirrors their local clients (by network prefix?)
I Stickyness of (large) files to certain mirrors, to make better

use of buffer caches?



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

Other Ideas
I Finer geolocation would be good for "Internet countries"

like Germany
I Send mirrors their local clients (by network prefix?)
I Stickyness of (large) files to certain mirrors, to make better

use of buffer caches?



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

Your Ideas?

(This space intentially left blank)



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

We just love mirrors...

...because they make us visible :-)



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

Thanks!



Content Distribution On Large Scale

Deployment

Pros, Cons, Ideas

Questions?

poeml at suse.de



Content Distribution On Large Scale

Appendix

For Further Reading

For Further Reading

I http://mirrorbrain.org/
I http://www.opensuse.org/Build_Service/Redirector
I https://forgesvn1.novell.com/svn/opensuse/trunk/

tools/download-redirector-v2/mod_zrkadlo/mod_zrkadlo.c

http://mirrorbrain.org/
http://www.opensuse.org/Build_Service/Redirector
https://forgesvn1.novell.com/svn/opensuse/trunk/tools/download-redirector-v2/mod_zrkadlo/mod_zrkadlo.c
https://forgesvn1.novell.com/svn/opensuse/trunk/tools/download-redirector-v2/mod_zrkadlo/mod_zrkadlo.c

	Introduction
	About
	The Problem
	Approaches

	Implementation
	Components
	Mirror Database
	The Mirrorlist Generator / Redirector

	Deployment
	Setup
	Optimizations
	Pros, Cons, Ideas

	Appendix
	For Further Reading


